The new RawData, Wire and Hit objects

or, “what have you done with my data”

Gianluca Petrillo, Erica Snider

University of Rochester/Fermilab

MicroBooNE IIT Workshop, January 7th 2015

H@‘éﬂ UNIVERSITY of

Ny ROCHESTER # Fermilab

G. Petrillo (Rochester/FNAL) January 7" 2015 1/27

ﬂ Introduction

Q Changes
@ raw::RawDigit
@ recob::Wire
@ recob::Hit

e Summary

G. Petrillo (Rochester/FNAL) January 7" 2015 2/27

Data products review

LArSoft comprises about 40 classes that can be serialized into
ROOQT files (“data products”).

Here the largest block of interconnected products is shown:
anab: :Calorimetry

anab: :CosmicTag
anab: :ParticleID

recob::Track
recob: :PFParticle
recob::Cluster
&:ob: :SpacePoin;j

[recob: :Showerj [recob: :Vertexj

[recob: :EndPothDj [recob: tHit

recob::Wire

raw: :RawDigit

Class relationships are expressed through data members (as art
pointers) and (a separate data product).

G. Petrillo (Rochester/FNAL)

January 7", 2015 3/27

The review process

These products are currently being reconsidered:
@ do they still reflect useful concepts?
@ do they still meet experiments’ current needs?
@ do they look flexible enough to accommodate future needs?
@ can they read outside an art environment?

The review process is such organized:

@ there is a lot of discussions with code authors
@ we collect the ideas and synthesize proposals

© proposals are evaluated by a specific meeting with experiments
and framework representatives

Q often, it's coTo 1
@ finally, it's time to implement them

G. Petrillo (Rochester/FNAL) January 7th ,2015 4/27

https://indico.fnal.gov/categoryDisplay.py?categId=426
https://indico.fnal.gov/categoryDisplay.py?categId=426

Planned changes

These data products are identified as revision candidate:
raw: :RawDigit removing pedestal information

recob:

recob:

recob:

recob:

recob:

:Wire removing art dependency
:Hit removing art dependency, changing some data

members

:Cluster adding a few data members, removing a few

others

:EndPoint2D splitting into a geometric 2D point class and a

reconstructed class

:Track redesigning the concept, splitting in different classes

G. Petrillo (Rochester/FNAL) January 7th ,2015 5/27

raw: :RawDigit

@ RawData: : fADC became private

@ RawData::fPedestal is candidate for removal: its information
should ideally come from a database

@ documentation shows some usage example and precise definition
of data members

fADC replaced by ADCs () (read-only)
fSigmaPedestal | removed

raw: :RawDigit data is often compressed: uncompress it with

std: :vector<short> uncompressed_digits (rawdigit->Samples());
raw: :Uncompress
(rawdigit->ADCs (), uncompressed_digits, rawdigit->Compression());

(raw: :Uncompress () is defined in RawData/raw.h)

G. Petrillo (Rochester/FNAL) January 7th ,2015

recob: :Wire

@ Wire::fRawDigit was removed

@ Wire::Channel () was added

@ Wire::£fSignalType was removed
@ documentation updated

recob: :Wire class is now art-independent. Consequences:
@ no direct way to connect to the original raw: : RawDigit
@ constructors are changed (no raw: : RawDigit pointer any more)

G. Petrillo (Rochester/FNAL) January 7" 2015 7/27

recob: :Wire: pointer removal

art pointer to raw: : RawDigit has been removed from

recob: :Wire

prescription: a producer creating recob: :Wire from

raw: :RawDigit should also create their 1-to-1 association
Calwire-like modules in LArSoft, uboonecode and lbnecode
have been updated to produce this association

the pointer was used (almost?) exclusively to get channel number;
now can be accessed directly as recob: :Wire: :Channel ()
channel number has now its own data type, raw: : ChannelID_t
(defined in SimpleTypesAndConstants/RawTypes.h);a
special constant raw: : InvalidChannelID represents... an
invalid channel ID

do you still need the original raw: : RawDigit?

I am working to write some generic (meaning also somehow
inefficient) code to get blindly from a art: :Ptr<recob::Wire>
to its associated raw: :RawDigit...

G. Petrillo (Rochester/FNAL) January 7th ,2015 8/27

recob: :Wire! raw: :RawDigit access

In the meanwhile, an efficient wire loop:

// 1if you have the wire handle from the event...
art::ValidHandle<recob::Wire> Wires

= event.getValidHandle (CalWireModuleLabel) ;
// ... query for the Wire-RawDigit association from the same module
art::FindOneP<raw: :RawDigit> RawDigits (Wires, event, CalWireModuleLabel)|;

for (size_t iWire = 0; iWire < Wires->size(); ++iWire) {
// this is the wire...
recob: :Wire const& wire = Wires->at (iWire);

// ... and this is the associated RawDigit
art::Ptr<raw::RawDigit> consté& pDigit = RawDigits->at (iWire);
/Y ooc

} // for

Requires:

#include <art/Framework/Core/FindOneP.h>
#include "art/Framework/Principal/Handle.h"
#include "RecoBase/Wire.h>

#include "RawData/RawDigit.h>

G. Petrillo (Rochester/FNAL; January 7th ,2015 9/27

recob: :Wire: construction

@ constructor has become simple, taking a list of all data members
@ for convenience, a wire creation helper is also provided

From uboonecode/uboone/CalData/CalWireROI_module.cc:

art::Ptr<raw::RawDigit> digitVec; // pointer to the original RawDigit
std::unique_ptr<std::vector<recob::Wire>> wirecol; // future product
std::unique_ptr<art::Assns<raw::RawDigit,recob::Wire>> WireDigitAssn;
recob: :Wire: :RegionsOfInterest_t ROIVec; // signal regions of interest

// create the new wire directly in wirecol
wirecol->push_back
(recob: :WireCreator (std: :move (ROIVec), xdigitVec) .move()) ;
// add an association between the last object in wirecol
// (that we just inserted) and digitVec
if (!'util::CreateAssn
(xthis, evt, *wirecol, digitVec, *xWireDigitAssn, fSpillName))
{
throw art::Exception (art::errors::InsertFailure) /* ... #*/;
} // if failed to add association

The helper recob: :WireCreator is defined in:

’#include "RecoBaseArt/WireCreator.h"

G. Petrillo (Rochester/FNAL) January 7th , 2015

recob: :Wire: “but | want...

RawDigit () gone; see previous slides
RawDigit () —>Channel () | use Channel ()
SignalType () really?? anyway see below

To get the signal type you need the geometry information:

recob::Wire const& wire; // ... filled with a real wire
// geo::SigType sigType = wire.SignalType(); // removed!!
art::ServiceHandle<geo: :Geometry> geom;

geo::5igType sigType = geom->SignalType (wire.Channel());

Requires:

#include "SimpleTypesAndConstants/geo_types.h"
#include "Geometry/Geometry.h"
#include "RecoBase/Wire.h"

G. Petrillo (Rochester/FNAL) January 7th , 2015

@ removed some ambiguously defined data members, added some
replacements for them

@ added some new ones: RMS (), DegreesOfFreedom (), ...
@ Hit::fRawDigit and Hit::fWire were removed
@ documentation updated

recob: :Hit class is now art-independent. Consequences:

@ no direct way to connect to the original raw: : RawDigit and
recob: :Wire

@ constructors are changed (no raw: :RawDigit nor
recob: :Wire pointer any more)

G. Petrillo (Rochester/FNAL) January 7th , 2015 12/27

recob: :Hit: times

@ StartTime () and EndTime () have an ambiguous definition
@ the code usually seems to expect them to be t = fheak = ohit

@ most common use: (EndTime () -StartTime()) /2.): peak
half-width

@ second common use: tick time range for time matching

New approach:
@ StartTime () and EndTime () ambiguous: removed!
@ enter RMS (), related to hit width (o for Gaussian hits)

@ also, and mostly unrelated: added signal () : the waveform
portion the hit was extracted from

@ also add signal range time extremes, StartTick () and
EndTick (), in TDC count units

G. Petrillo (Rochester/FNAL) January 7th , 2015

recob: :Hit: pointer removal and construction

@ same situation as for recob: : Wire: simple constructors...
@ for convenience, a hit creation helper is also provided

Code from larreco/HitFinder/GausHitFinder module.cc:

’produces<std::vector<recob::Hit>>();
L

Listing 1: In module constructor: equivalent to produces<> () (old code)

std::unique_ptr<std::vector<recob::Hit>> hcol; // data product

// construct a hit (including pointers to wire and rawdigit)
recob::Hit hit (
wire, wid, StartTime[dd], EndTime[dd], MeanPosition[dd],

NumOfHits [dd], FitGoodness[dd]
)
)i
// move the hit into the product
hcol.emplace_back (std: :move (hit));

evt.put (std::move (hcol)); // put the data product into the event

art::Ptr<recob::Wire> wire; // original wire (with pointer to raw digit)

MeanPosError[dd], Charge[dd], ChargeError[dd], Amp[dd], AmpError[dd],

G. Petrillo (Rochester/FNAL) January 7th , 2015

14 /27

recob: :Hit: pointer removal and construction

@ same situation as for recob: : Wire: simple constructors...
@ for convenience, a hit creation helper is also provided

Code from larreco/HitFinder/GausHitFinder module.cc:

’recob::HitCollectionCreator::declare_products(*this);
L |

Listing 3: In module constructor: equivalent to produces<> ()

recob::HitCollectionCreator hcol (xthis, evt); // data product proxy
art::Ptr<recob::Wire> wire; // original wire
art::Ptr<raw::RawDigits> rawdigits; // original rawdigit

// create a hit with HitCreator

recob: :HitCreator hit(
*wire, wid, startT, endT, RMS([dd], MeanPosition[dd],
MeanPosError[dd], Amp([dd], AmpError[dd], Charge[dd], ChargeError[dd],
SumADC [dd], NumOfHits[dd], dd, FitGoodness[dd], FitNDF [dd],
std::vector<float> (signal.begin() + startT, signal.begin() + endT)
)i

// move the hit into the product and associate it

hcol.emplace_back (hit.move (), wire, rawdigits);

hcol.put_into(evt); // put the data product into the event

etrillo (Rochester/FNAL) January 7th , 2015 15/27

recob: : Hit: construction (commentary)

recob: :HitCreator helper class makes creation of new
recob: :Hit roughly similar to the old one

pointers to raw: :RawDigit and recob: :Wire have been
removed, therefore...

prescription: a producer creating recob: : Hit should also
produce associations to its recob: :Wire and raw: :RawDigit,
as proper

aclass, called recob: :HitCollectionCreator, simplifies the
creation of a recob: : Hit data product together with its (optional)
associations

both declared in 1ardata/RecoBaseArt/HitCreator.h

HitFinder-like modules in LArSoft, uboonecode and lbnecode
have been updated (checks needed!)

G. Petrillo (Rochester/FNAL) January 7" 2015 16/27

recob: :Hit: other additions

Additions:
@ there may be multiple hits in the same time range: we allow each
hit to know
— how many hits are reconstructed in that range (Multiplicity ())
— which of them this one is (LocalIndex())

@ Channel (): ID of the channel the hit is on

@ DegreesOfFreedom () of the hit finding process (pairs with the
existing GoodnessOfFit ())

@ SummedADC (), plain sum of the ADC counts covered by the hit (in
contrast with Integral (), that is typically a direct fit parameter)

ADC count

(calibrated)
StartTick

12
EndTick 132
PeakTime 52.0
LocalIndex 0
Multiplicity 3

StartTick 4

EndTick 132 R
0) - 50 PapkTime 106.9[1 750 X
LocalIndex 2 Tick count
Multiplicity 3

Illustration of a train of hits (multiplicity: 3) in the same region of interest
January 7", 2015 17/27

G. Petrillo (Rochester/FNAL)

recob: :Hit: “but | want..”

RawDigit (), Wire () both gone (see above)
RE.ElWDlglt () —>(.3hal1nnel () use Channel ()

Wire () —>RawDigit () —>Channel ()

Charge (), Charge (false) = Integral ()

Charge (true) = PeakAmplitude ()
StartTime (), EndTime () see above, but also:
StartTime () maybe PeakTimeMinusRMS ()
EndTime () maybe PeakTimePlusRMS ()
S%gmaStart.Tlme 0 removed, not replaced
SigmaEndTime ()

ask the authors of hit finder algorithms to verify and correct:
@ fLocallIndex (most often | just pluggedina -1)
@ fStartTick, fEndTick
@ fSignal: did | get the right signal vector?
@ fNDF
fEndTick .
@ fSummedADC (usually >, 70, ., £Signaly)

G. Petrillo (Rochester/FNAL) January 7th , 2015

Wait a moment... won'’t this break the existing data?

Time line:

@ this revolution will render the existing data unreadable, a textbook
example of breaking change

@ testing of the new classes should start immediately after this
workshop; you are welcome to start it today!

@ changes to recob: :Cluster will be discussed and summarized
during this workshop

@ we are preparing a draft implementation of a proposal for
recob: :Track

@ we want MicroBooNE to be able to use the new classes in your
next Monte Carlo Challenge (end of January 2015)

This is still a very ambitious goal.

G. Petrillo (Rochester/FNAL) January 7 2015 19/27

@ changes to raw: :RawDigit, recob: :Wire and recob: :Hit
are in a published branch: feature/DataProductRevision

@ that code compiles, but checks by the respective code authors
and testing are due

@ aitemized status is available on the web: nttps://cdevs. fnal.gov/

redmine/projects/larsoft/wiki/DataProductsArchitectureActionItems
@ there is still plenty of room for changes
@ Eric Church will help with testing; but

@ err... did | mention that authors of the algorithms should verify the
changes make sense?
No, really: there are a lot of placeholders in the code, that you will want
to replace with real information

. Petrillo (Rochester/FNAL) January 7" 2015 20/27

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/DataProductsArchitectureActionItems
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/DataProductsArchitectureActionItems
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/DataProductsArchitectureActionItems

@ we are reviewing the main reconstruction data products
@ we have a partial implementation in place; working fast on the rest

@ as you may have overheard by now, we
to complete the work

@ we also need the experiments to actively scrutiny the changes
under discussion

G. Petrillo (Rochester/FNAL) January 7th , 2015 21/27

Additional material

G. Petrillo (Rochester/FNAL) January 7th , 2015 22/27

The other example: recob: : Track

The track object (recob: : Track) has some problems:
@ lacks a definition about density of trajectory points
@ contains elements that are algorithm-dependent
@ is able to host Bézier tracks only by a (ugly) hack

A proposal, under discussion, consists in:

@ leaving in recob: : Track only general track properties: start and
end point, intermediate trajectory points, track quality

@ prescribing by policy the trajectory point density

@ delegating the continuous representation to another object
(recob::Trajectory)

@ moving the momentum estimation into a new object
(recob: :Momentum)

@ binding all these objects with associations

G. Petrillo (Rochester/FNAL) January 7th , 2015

Example of direct use of data in another framework

Say that your favourite framework has a data model where all data
classes inherit from ThataObject (may be even ROOT’s TObject).
You can define a base class:

#include "ArtlessFW/TDataObject.h"
#include "RecoBase/Hit.h"

template <typename Data>
class TDataWrapper: public Data, public TDataObject { /* ... */ };

namespace wrapped {
class Hit: public TDataWrapper<recob::Hit> { /x ... */ };
}

@ wrapped: :Hit includes the very interface of recob: :Hit
@ ... plus additional methods that you care to define specifically for it
@ you are using the original 1ardata/RecoBase/Hit.h[.cxx]
@ you might even read directly from the art tree into wrapped: :Hit
* | haven't tried the limits of this model, but it might even work
(if I were sure, this slide would not be in the appendix!)

G. Petrillo (Rochester/FNAL) January 7th , 2015 24 /27

The current proposal: raw digits and wires

The review has so far focused on six data products.

@ removal of pedestal information, still under discussion I

@ removal of art pointers
@ addition of channel ID member

@ removal of SignalType ()

G. Petrillo (Rochester/FNAL) NETTETY 7th , 2015 25/27

The current proposal: hits and clusters

recob: :Hit: deposition from a particle on a wire
@ removal of art pointers
@ removal of unused information
@ addition of hit width (RMS)

@ more precise definition of start and end times (now defined in TDC
tick units), peaks and integrals

v

recob: :Cluster: set of hits from the same particle
@ removal of unused information (dQ/dx)
@ addition of shower/track discriminating variables
@ more things being discussed

G. Petrillo (Rochester/FNAL) January 7th , 2015 26/27

The current proposal: tracks and 2D end-points

recob: : Track: reconstructed path of a ionizing particle
A lot of discussion ongoing... implementing multiple classes:
@ adiscrete track, result of the tracking fit
@ a trajectory, continuous representation of the particle path
@ a momentum describing the initial impulse of the particle
@ additional classes will hold results specific to the algorithms

recob: :EndPoint2D: a point on a wire plane
Still under discussion. Split into:
@ a geometric object: just two coordinates

@ an object result of a reconstruction algorithm (with goodness of fit
etc.)

G. Petrillo (Rochester/FNAL) January 7th , 2015 27127

	Introduction
	Changes
	raw::RawDigit
	recob::Wire
	recob::Hit

	Summary
	Appendix

